Nonstationary Time Series and Missing Data
نویسندگان
چکیده
منابع مشابه
Missing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملData Mining of Multiple Nonstationary Time Series
A data mining method for synthesizing multiple time series is presented. Based on a single time series algorithm, the method embeds multiple time series into a phase space. The reconstructed state space allows temporal pattern extraction and local model development. Using an a priori data mining objective, an optimal local model is chosen for short-term forecasting. For the same sampling period...
متن کاملOnline Time Series Prediction with Missing Data
We consider the problem of time series prediction in the presence of missing data. We cast the problem as an online learning problem in which the goal of the learner is to minimize prediction error. We then devise an efficient algorithm for the problem, which is based on autoregressive model, and does not assume any structure on the missing data nor on the mechanism that generates the time seri...
متن کاملFunctional-Coefficient Models for Nonstationary Time Series Data∗
This paper studies functional coefficient regression models with nonstationary time series data, allowing also for stationary covariates. A local linear fitting scheme is developed to estimate the coefficient functions. Consistency and asymptotic distributions of the estimators are obtained, showing different convergence rates for the stationary and nonstationary covariates. A two-stage approac...
متن کاملPrincipal components analysis of nonstationary time series data
The effect of nonstationarity in time series columns of input data in principal components analysis is examined. This usually happens when indexing economic indicators for monitoring purposes. The first component averages all the variables without reducing dimensionality. As an alternative, sparse principal components analysis can be used but attainment of sparsity among the loadings is influen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2010
ISSN: 1225-066X
DOI: 10.5351/kjas.2010.23.1.073